Найщільніший матеріал. Найважчі метали у світі

Цей базовий список із десяти елементів є "найважчим" за щільністю на один кубічний сантиметр. Однак зверніть увагу, що густина - це не маса, вона просто показує, наскільки щільно упакована маса тіла.

Тепер, коли ми це розуміємо, давайте поглянемо на найважчі у всьому відомому людству всесвіту.

10. Тантал (Tantalum)

Щільність на 1 см ³ - 16,67 г

Атомний номер танталу - 73. Цей синьо-сірий метал дуже твердий, а також має супервисоку температуру плавлення.

9. Уран (Uranium)


Щільність на 1 см 3 - 19,05 г

Виявлений у 1789 році німецьким хіміком Мартіном Генріхом Клапортом (Martin H. Klaprot), метал став справжнім ураном лише майже через сто років, у 1841 році, завдяки французькому хіміку Ежену Мелькіору Пеліго.

8. Вольфрам (Wolframium)


Щільність на 1 см 3 - 19,26 г

Вольфрам існує у чотирьох різних мінералах, а також є найважчим із усіх елементів, що відіграють важливу біологічну роль.

7. Золото (Aurum)


Щільність на 1 см 3 - 19,29 г

Говорять, гроші на деревах не ростуть, чого не скажеш про золото! Невеликі сліди золота виявили на листі евкаліптових дерев.

6. Плутоній (Plutonium)


Щільність на 1 см ³ - 20,26 г

Плутоній демонструє барвистий стан окислення в водному розчині, а також може спонтанно змінювати стан окиснення та кольору! Це справжній хамелеон серед елементів.

5. Нептуній (Neptunium)

Щільність на 1 см ³ - 20,47 г

Названий на честь планети Нептун, його виявили професор Едвін Макміллан (Edwin McMillan) у 1940 році. Він також став першим виявленим синтетичним трансурановим елементом із сімейства актиноїдів.

4. Реній (Rhenium)

Щільність на 1 см ³ - 21,01 г

Назва цього хімічного елемента походить від латинського слова "Rhenus", що означає "Рейн". Він був виявлений Вальтером Ноддаком (Walter Noddack) у Німеччині 1925 року.

3. Платина (Platinum)

Щільність на 1 см ³ - 21,45 г

Один із найдорожчих металів у цьому списку (поряд із золотом), і використовується для виготовлення практично всього. В якості дивного факту: вся здобута платина (до останньої частки) могла б поміститися у вітальні середнього розміру! Не так багато, насправді. (Спробуйте помістити до неї все золото.)

2. Ірідій (Iridium)


Щільність на 1 см ³ - 22,56 г

Іридій був виявлений у Лондоні в 1803 році англійським хіміком Смітсоном Теннантом (Smithson Tennant) разом з осмієм: елементи були присутні в природній платині як домішки. Так, іридій виявили суто випадково.

1. Осмій (Osmium)


Щільність на 1 см ³ - 22,59 г

Немає нічого більш важкого (на один кубічний сантиметр), ніж осмій. Назва цього елемента походить від давньогрецького слова "osme", що означає "запах", оскільки хімічні реакціїйого розчинення у кислоті чи воді супроводжуються неприємним, стійким запахом.

Осмій на сьогодні визначений як найважча речовина на планеті. Лише один кубічний сантиметр цієї речовини важить 22.6 грама. Він був відкритий в 1804 році англійським хіміком Смітсоном Теннантом, при розчиненні золота в пробірці залишився осад. Це сталося через особливості осмію, він нерозчинний у лугах та кислотах.

Найважчий елемент планети

Являє собою блакитно-білий металевий порошок. У природі зустрічається у вигляді семи ізотопів, шість із них стабільні та один нестійкий. По густині трохи перевершує іридій, який має щільність 22,4 грама на кубічний сантиметр. З виявлених на сьогодні матеріалів найважча речовина у світі - це осмій.

Він відноситься до групи таких як лантан, ітрій, скандій та інших лантаноїдів.

Дорожче золота та алмазів

Видобує його дуже мало, близько десяти тисяч кілограмів на рік. Навіть у найбільшому джерелі осмію, Джезказганському родовищі, міститься близько трьох десятимільйонних часток. Біржова вартість рідкісного металу у світі сягає близько 200 тисяч доларів за один грам. При цьому максимальна чистота елемента в процесі очищення близько 70%.

Хоча у російських лабораторіях вдалося отримати чистоту 90,4 відсотка, але кількість металу не перевищувала кількох міліграм.

Щільність матерії за межами планети Земля

Осмій, безперечно, є лідером найважчих елементів нашої планети. Але якщо ми звернемо свій погляд у космос, то до нашої уваги відкриється безліч речовин важчих, ніж наш «король» важких елементів.

Справа в тому, що у Всесвіті існують умови дещо інші, ніж на Землі. Гравітація ряду настільки велика, що речовина неймовірно ущільнюється.

Якщо розглянути структуру атома, то виявиться, що відстань у міжатомному світі чимось нагадує видимий нами космос. Де планети, зірки та інші знаходяться на досить великій дистанції. Решта ж займає порожнеча. Саме таку структуру мають атоми, і за сильної гравітації ця дистанція досить сильно зменшується. Аж до «вдавлювання» одних елементарних частинок до інших.

Нейтронні зірки - надщільні об'єкти космосу

У пошуках за межами нашої Землі ми зможемо виявити найважчу речовину в космосі на нейтронних зірках.

Це досить унікальні космічні жителі, один із можливих типів еволюції зірок. Діаметр таких об'єктів становить від 10 до 200 кілометрів, при масі, що дорівнює нашому Сонцю, або в 2-3 рази більше.

Це космічне тіло в основному складається з нейтронної серцевини, яка складається з плинних нейтронів. Хоча, за деякими припущеннями вчених, вона повинна перебувати в твердому стані, достовірної інформації на сьогодні не існує. Однак відомо, що саме нейтронні зірки, досягаючи свого переділу стиску, згодом перетворюються на колосальний викид енергії, близько 10 43 -10 45 джоулів.

Щільність такої зірки можна порівняти, наприклад, з вагою гори Еверест, поміщеної в сірникову коробку. Це сотні мільярдів тонн за один кубічний міліметр. Наприклад, щоб стало зрозуміліше, наскільки велика щільність речовини, візьмемо нашу планету з її масою 5,9×1024 кг і «перетворимо» на нейтронну зірку.

В результаті, щоб зрівнялася із щільністю нейтронної зірки, її потрібно зменшити до розмірів звичайного яблука діаметром 7-10 сантиметрів. Щільність унікальних зоряних об'єктів збільшується із переміщенням до центру.

Шари та щільність речовини

Зовнішній шар зірки є у вигляді магнітосфери. Безпосередньо під нею щільність речовини вже сягає близько однієї тонни на кубічний сантиметр. Враховуючи наші знання про Землю, на даний момент це найважча речовина з виявлених елементів. Але не поспішайте з висновками.

Продовжимо наші дослідження унікальних зірок. Їх називають також пульсарами через високу швидкість обертання навколо своєї осі. Цей показник у різних об'єктів коливається від кількох десятків до сотень обертів на секунду.

Прослідкуємо далі у вивченні надщільних космічних тіл. Потім слідує шар, який має характеристики металу, але, швидше за все, він схожий за поведінкою та структурою. Кристали набагато менше, ніж ми бачимо в кристалічних ґратах Земних речовин. Щоб побудувати лінію із кристалів в 1 сантиметр, знадобиться викласти понад 10 мільярдів елементів. Щільність у цьому шарі в один мільйон разів вища, ніж у зовнішньому. Це не найважча речовина зірки. Далі йде шар, багатий на нейтрони, щільність якого в тисячу разів перевищує попередній.

Ядро нейтронної зірки та її щільність

Нижче знаходиться ядро, саме тут щільність досягає свого максимуму - в два рази вище, ніж шар, що лежить вище. Речовина ядра небесного тіла складається з усіх відомих фізики елементарних частинок. На цьому ми досягли кінця подорожі до ядра зірки у пошуках найважчої речовини у космосі.

Місія у пошуках унікальних за щільністю речовин у Всесвіті, начебто, завершена. Але космос сповнений загадок та невідкритих явищ, зірок, фактів та закономірностей.

Чорні дірки у Всесвіті

Слід звернути увагу, що сьогодні вже відкрито. Це чорні дірки. Можливо, саме ці загадкові об'єкти можуть бути претендентами на те, що найважча речовина у Всесвіті – їхня складова. Зверніть увагу, що гравітація чорних дірок настільки велика, що світло не може залишити її.

За припущеннями вчених, речовина, затягнута область простору часу, ущільнюється настільки, що простору між елементарними частинками не залишається.

На жаль, за горизонтом подій (так називається кордон, де світло і будь-який об'єкт, під дією сил гравітації, не може залишити чорну дірку) йдуть наші здогади та непрямі припущення, що ґрунтуються на викидах потоків частинок.

Ряд вчених припускають, що за обрієм подій поєднуються простір і час. Існує думка, що вони можуть бути "проходом" в інший Всесвіт. Можливо, це відповідає істині, хоча цілком можливо, що за цими межами відкривається інший простір із новими законами. Область, де час зміниться «місцем» із простором. Місцезнаходження майбутнього та минулого визначається лише вибором слідування. Подібно до нашого вибору йти праворуч або ліворуч.

Потенційно припустимо, що у Всесвіті існують цивілізації, які освоїли подорожі у часі через чорні дірки. Можливо, у майбутньому люди з планети Земля відкриють таємницю подорожі крізь час.

Навколишній світ таїть у собі ще безліч загадок, але навіть давно відомі вченим явища та речовини не перестають дивувати та захоплювати. Ми милуємося яскравими фарбами, насолоджуємося смаками та використовуємо властивості різноманітних речовин, які роблять наше життя комфортнішим, безпечнішим та приємнішим. У пошуках найнадійніших і міцних матеріалів людина здійснила чимало захоплюючих відкриттів, і перед вами добірка якраз із 25 таких унікальних з'єднань!

25. Алмази

Про це точно знають якщо не всі, то майже все. Алмази – це не тільки одні з найшанованіших дорогоцінного каміння, але й один із найтвердіших мінералів на Землі. За шкалою Мооса (шкала твердості, у якій оцінка дається з реакції мінералу на дряпання) алмаз числиться на 10 рядку. Всього в шкалі 10 позицій, і 10-а - останній і найтвердіший ступінь. Алмази такі тверді, що подряпати їх можна хіба іншими алмазами.

24. Ловчі мережі павука виду Caerostris darwini


Фото: pixabay

У це складно повірити, але мережа павука Caerostris darwini (або павук Дарвіна) міцніше стали і твердіші за кевлар. Цю павутину визнали найтвердішим біологічним матеріалом у світі, хоча зараз у неї вже з'явився потенційний конкурент, але дані ще не підтверджені. Павукове волокно перевірили на такі характеристики, як руйнівна деформація, ударна в'язкість, межа міцності і модуль Юнга (властивість матеріалу чинити опір розтягуванню, стиску при пружній деформації), і за всіма цими показниками павутиння проявила себе дивним чином. До того ж ловча мережа павука Дарвіна неймовірно легка. Наприклад, якщо волокном Caerostris darwini обернути нашу планету, вага такої довгої нитки становитиме лише 500 грамів. Таких довгих мереж немає, але теоретичні підрахунки просто вражають!

23. Аерографіт


Фото: BrokenSphere

Ця синтетична піна - один з найлегших волокнистих матеріалів у світі, і вона є мережею вуглецевих трубочок діаметром всього в кілька мікронів. Аерографіт у 75 разів легший за пінопласт, але при цьому набагато міцніший і пластичніший. Його можна стиснути до розмірів, у 30 разів менших за початковий вид, без будь-якої шкоди для його надзвичайно еластичної структури. Завдяки цій властивості аерографітна піна може витримати навантаження, що в 40 000 разів перевищує її власну вагу.

22. Паладієве металеве скло


Фото: pixabay

Команда вчених їх Каліфорнійського технічного інституту та Лабораторії Берклі (California Institute of Technology, Berkeley Lab) розробила новий вид металевого скла, який поєднав практично ідеальну комбінацію міцності і пластичності. Причина унікальності нового матеріалу полягає в тому, що його хімічна структура успішно приховує крихкість склоподібних матеріалів і при цьому зберігає. високий порігвитривалості, що у результаті значно збільшує втомну міцність цієї синтетичної структури.

21. Карбід вольфраму


Фото: pixabay

Карбід вольфраму - це неймовірно твердий матеріал, що має високу зносостійкість. У певних умовах це з'єднання вважається дуже тендітним, але під великим навантаженням воно показує унікальні пластичні властивості, що виявляються у вигляді смуг ковзання. Завдяки всім цим якостям карбід вольфраму використовується у виготовленні бронебійних наконечників та різного обладнання, включаючи всілякі різці, абразивні диски, свердла, фрези, долота для буріння та інші різальні інструменти.

20. Карбід кремнію


Фото: Tiia Monto

Карбід кремнію – один із основних матеріалів, що використовуються для виробництва бойових танків. Це з'єднання відоме своєю низькою вартістю, видатною тугоплавкістю та високою твердістю, і тому воно часто використовується у виготовленні обладнання чи спорядження, яке має відбивати кулі, розрізати чи шліфувати інші міцні матеріали. З карбіду кремнію виходять чудові абразиви, напівпровідники і навіть вставки в ювелірні прикраси, що імітують алмази.

19. Кубічний нітрид бору


Фото: wikimedia commons

Кубічний нітрид бору – це надтвердий матеріал, що за своєю твердістю схожий з алмазом, але має й низку відмінних переваг – високу температурну стійкість і хімічну стійкість. Кубічний нітрид бору не розчиняється в залізі і нікелі навіть під впливом високих температур, тоді як алмаз у таких умовах вступає в хімічні реакції досить швидко. Насправді це вигідно для його використання у промислових шліфувальних інструментах.

18. Надвисокомолекулярний поліетилен високої щільності (СВМПЕ), марка волокон «Дайніма» (Dyneema)


Фото: Justsail

Поліетилен з високим модулем пружності має надзвичайно високу зносостійкість, низький коефіцієнт тертя і високу в'язкість руйнування (низькотемпературна надійність). Сьогодні його вважають найміцнішою волокнистою речовиною у світі. Найдивовижніше в цьому поліетилені те, що він легший за воду і одночасно може зупиняти кулі! Троси та канати з волокон Дайніма не тонуть у воді, не потребують мастила та не змінюють свої властивості при намоканні, що дуже актуально для суднобудування.

17. Титанові метали


Фото: Alchemist-hp (pse-mendelejew.de)

Титанові сплави неймовірно пластичні та демонструють дивовижну міцність під час розтягування. До того ж вони мають високу жароміцність і корозійну стійкість, що робить їх вкрай корисними в таких областях, як авіабудування, ракетобудування, суднобудування, хімічне, харчове та транспортне машинобудування.

16. Сплав Liquidmetal


Фото: pixabay

Розроблений у 2003 році у Каліфорнійському технічному інституті (California Institute of Technology), цей матеріал славиться своєю силою та міцністю. Назва з'єднання асоціюється з чимось крихким і рідким, але при кімнатній температурі воно насправді надзвичайно тверде, зносостійке, не боїться корозії і при нагріванні трансформується, як термопласти. Основними сферами застосування поки що є виготовлення годинників, ключок для гольфу та покриттів. мобільних телефонів(Vertu, iPhone).

15. Наноцелюлоза


Фото: pixabay

Наноцелюлозу виділяють з деревного волокна, і вона являє собою новий вид дерев'яного матеріалу, який міцніший навіть за сталі! До того ж наноцелюлоза ще й дешевша. Інновація має великий потенціал і в майбутньому може скласти серйозну конкуренцію склу та вуглеволокну. Розробники вважають, що цей матеріал невдовзі матиме великий попит у виробництві армійської броні, супергнучких екранів, фільтрів, гнучких батарейок, абсорбуючих аерогелів та біопалива.

14. Зуби равликів виду «морське блюдечко»


Фото: pixabay

Раніше ми вже розповіли вам про ловчу мережу павука Дарвіна, яку колись визнали найміцнішим біологічним матеріалом на планеті. Однак недавнє дослідження показало, що саме морське блюдечко - найбільш міцна з відомих науці біологічних субстанцій. Так-так, ці зубки міцніші за павутиння Caerostris darwini. І це не дивно, адже крихітні морські створіння харчуються водоростями, що ростуть на поверхні суворих скель, і щоб відокремити їжу від гірської породи, цим звіряткам доводиться попрацювати. Вчені вважають, що в майбутньому ми зможемо використати приклад волокнистої структури зубів морських блюдечок у машинобудівній промисловості і почнемо будувати автомобілі, човни і навіть повітряні судна підвищеної міцності, надихнувшись прикладом простих равликів.

13. Мартенситно-старіюча сталь


Фото: pixabay

Мартенситно-старіюча сталь - це високоміцний і високолегований сплав, що має чудову пластичність і в'язкість. Матеріал широко поширений у ракетобудуванні та використовується для виготовлення різноманітних інструментів.

12. Осмій


Фото: Periodictableru / www.periodictable.ru

Осмій – неймовірно щільний елемент, і завдяки своїй твердості та високій температуріплавлення він важко піддається механічній обробці. Саме тому осмій використовують там, де довговічність та міцність цінуються найбільше. Сплави з осмієм зустрічаються в електричних контактах, ракетобудуванні, військових снарядах, хірургічних імплантатах та застосовуються ще в багатьох інших областях.

11. Кевлар


Фото: wikimedia commons

Кевлар - це високоміцне волокно, яке можна зустріти в автомобільних шинах, гальмівних колодках, кабелях, протезно-ортопедичних виробах, бронежилетах, тканинах захисного одягу, суднобудуванні та деталях безпілотних літальних апаратів. Матеріал став практично синонімом міцності і є видом пластику з неймовірно високою міцністю і еластичністю. Межа міцності кевлару у 8 разів вища, ніж у сталевого дроту, а плавитися він починає при температурі 450℃.

10. Надвисокомолекулярний поліетилен високої щільності, марка волокон "Спектра" (Spectra)


Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЕ – це насправді дуже міцний пластик. Спектра, марка СВМПЭ, – це своє чергу легке волокно високої зносостійкості, вдесятеро перевищує за цим показником сталь. Як і кевлар, спектра використовується у виготовленні бронежилетів та захисних шоломів. Поряд з СВМПЕ марки дайним спектра популярна в суднобудуванні і транспортній промисловості.

9. Графен


Фото: pixabay

Графен - це алотропна модифікація вуглецю, і його кристалічна решітка товщиною всього в один атом настільки міцна, що вона в 200 разів твердіша за сталі. Графен на вигляд схожий на харчову плівку, але порвати його - практично непосильне завдання. Щоб пробити графеновий лист наскрізь, вам доведеться встромити в нього олівець, на якому повинен буде балансувати вантаж вагою з цілий шкільний автобус. Успіхів!

8. Папір із вуглецевих нанотрубок


Фото: pixabay

Завдяки нанотехнологіям вченим вдалося зробити папір, який у 50 тисяч разів тонший за людське волосся. Листи з вуглецевих нанотрубок в 10 разів легше стали, але найдивовижніше те, що по міцності вони перевершують у 500 разів! Макроскопічні пластини з нанотрубок найбільш перспективні виготовлення електродів суперконденсаторів.

7. Металева мікрорешітка


Фото: pixabay

Перед вами найлегший у світі метал! Металева мікрорешітка – це синтетичний пористий матеріал, який у 100 разів легший за пінопласт. Але нехай його зовнішній виглядне вводить вас в оману, адже ці мікрорешітки заодно і неймовірно міцні, завдяки чому вони мають великий потенціал для використання у всіляких інженерних галузях. З них можна виготовляти чудові амортизатори та теплові ізолятори, а дивовижна здатність цього металу стискатися та повертатися у свій первісний стан дозволяє використовувати його для накопичення енергії. Металеві мікрорешітки також активно застосовуються у виробництві різних деталей для літальних апаратів американської компанії Boeing.

6. Вуглецеві нанотрубки


Фото: User Mstroeck / en.wikipedia

Вище ми вже розповідали про надміцні макроскопічні пластини з вуглецевих нанотрубок. Але що це за матеріал такий? Насправді це згорнуті в трубку графенові поверхні (9-ий пункт). В результаті виходить неймовірно легкий, пружний та міцний матеріал. широкого спектрузастосування.

5. Аерограф


Фото: wikimedia commons

Відомий також як графеновий аерогель, цей матеріал надзвичайно легкий та міцний одночасно. У новому вигляді гелю рідка фаза повністю замінена на газоподібну, і він відрізняється сенсаційною твердістю, жароміцністю, низькою щільністю та низькою теплопровідністю. Неймовірно, але графеновий аерогель у 7 разів легший за повітря! Унікальне з'єднання здатне відновлювати свою початкову форму навіть після 90% стиснення і може вбирати таку кількість олії, яка в 900 разів перевищує вагу використовуваного для абсорбції аерографену. Можливо, у майбутньому цей клас матеріалів допоможе у боротьбі з такими екологічними катастрофами як розливи нафти.

4. Матеріал без назви, розробка Массачусетського технологічного інституту (MIT)


Фото: pixabay

Поки ви читаєте ці рядки, команда вчених із MIT працює над удосконаленням властивостей графену. Дослідники заявили, що їм вже вдалося перетворити двовимірну структуру цього матеріалу на тривимірну. Нова графенова субстанція ще не отримала своєї назви, але вже відомо, що її щільність у 20 разів менша, ніж у сталі, а її міцність у 10 разів вище за аналогічну характеристику сталі.

3. Карбін


Фото: Smokefoot

Хоча це і всього лише лінійні ланцюжки атомів вуглецю, карбін має в 2 рази більш високу межу міцності, ніж графен, і він в 3 рази жорсткіший за алмаз!

2. Нітрид бору вюрцитної модифікації


Фото: pixabay

Ця нещодавно відкрита природна речовина формується під час вулканічних вивержень, і вона на 18% твердіша за алмази. Втім, алмази воно перевершує ще за низкою інших параметрів. Вюрцитний нітрид бору - одна з всього 2 натуральних субстанцій, виявлених на Землі, яка твердіша за алмаз. Проблема в тому, що таких нітридів у природі дуже мало, тому їх непросто вивчати або застосовувати на практиці.

1. Лонсдейліт


Фото: pixabay

Відомий також як гексагональний алмаз, лонсдейліт складається з атомів вуглецю, але у разі даної модифікації атоми розташовуються дещо інакше. Як і вюрцитний нітрид бору, лонсдейліт - алмаз, що перевершує за твердістю природна субстанція. Причому цей дивовижний мінерал твердіший за алмаз на цілих 58%! Подібно до нітриду бору вюрцитної модифікації, це з'єднання зустрічається вкрай рідко. Іноді лонсдейліт утворюється під час зіткнення із Землею метеоритів, до складу яких входить графіт.

1. Найчорніша матерія, відома людині
Що станеться, якщо накласти один на одного краї вуглецевих нанотрубок та чергувати шари з них? Вийде матеріал, який поглинає 99.9% світла, яке потрапляє на нього. Мікроскопічна поверхня матеріалу є нерівною і шорсткою, яка заломлює світло і при цьому є поганою поверхнею, що відбиває. Після цього спробуйте використовувати вуглецеві нанотрубки як суперпровідники в певному порядку, що робить їх прекрасними поглиначами світла, і у вас вийде справжня чорна буря. Вчені всерйоз спантеличені потенційними варіантами застосування цієї речовини, оскільки, фактично, світло не «губиться», то речовина могла б використовуватися для поліпшення оптичних пристроїв, наприклад телескопів і навіть використовуватися для сонячних батарей, що працюють майже зі 100% ефективністю.
2. Найгорючіша речовина
Багато речей горить з разючою швидкістю, наприклад, стирофом, напалм і це тільки початок. Але що якби була речовина, яка могла б охопити вогнем землю? З одного боку, це провокаційне питання, але воно було задано як відправна точка. Трифторид хлору має сумнівну славу як жахливо горючу речовину, при тому, що нацисти вважали, що ця речовина надто небезпечна для роботи. Коли люди, які обговорюють геноцид, вважають, що метою їхнього життя є не використати будь-що, тому що це занадто смертельно, це підтримує обережне поводження з цими речовинами. Кажуть, що одного разу пролилася тонна речовини та почалася пожежа, і вигоріло 30,5 см бетону та метр піску з гравієм, доки все не вщухло. На жаль, нацисти мали рацію.
3. Найотруйніша речовина
Скажіть, що б ви найменше хотіли, що могло б потрапити на ваше обличчя? Це цілком могла бути найбільша смертоносна отрута, яка по праву займе 3 місце серед основних екстремальних речовин. Така отрута дійсно відрізняється від того, що марить бетон, і від найсильнішої кислоти у світі (яку скоро винайдуть). Хоча й не зовсім так, але ви всі, без сумніву, чули від медичної спільноти про ботокс, і завдяки йому прославився самий смертоносний отрута. Ботокс використовує ботулотоксин, що породжується бактерією «клостридіум ботулінум», і вона дуже смертоносна, і її кількості, що дорівнює крупинці солі, достатньо, щоб убити людину вагою в 200 фунтів (90,72 кг; прим. mixednews). Насправді вчені розрахували, що достатньо розпорошити всього 4 кг цієї речовини, щоб убити всіх людей на землі. Напевно, орел би вчинив набагато гуманніше з гримучою змією, ніж ця отрута з людиною.
4. Найгарячіша речовина
Існує дуже мало речей у світі, відомих людині як щось гарячіше, ніж внутрішня поверхнянещодавно розігрітого в мікрохвильовій печі Hot Pocket, але ця речовина, здається, поб'є і цей рекорд. Створена зіткненням атомів золота за майже світлової швидкості, речовину називають кварк-глюонним «супом», і вона досягає божевільних 4 трильйонів градусів Цельсія, що майже в 250 000 разів гаряча речовина всередині Сонця. Величина енергії, що випускається при зіткненні, була б достатньою, щоб розплавити протони та нейтрони, що саме по собі має такі особливості, про які ви навіть не підозрювали. Вчені кажуть, що ця речовина могла б нам дати уявлення про те, на що було схоже народження нашого Всесвіту, тому варто з розумінням поставитися до того, що крихітні наднові не створюються заради забави. Тим не менш, дійсно хороші новини полягають у тому, що «суп» займав одну трильйонну сантиметра і тривав протягом трильйонної однієї трильйонної секунди.
5. Найїдкіша кислота
Кислота - це жахлива речовина, одного з найстрашніших монстрів у кіно наділили кислотною кров'ю, щоб зробити його ще жахливішим, ніж просто машина для вбивства («Чужий»), тому всередині нас укоренилося, що вплив кислотою - це дуже погано. Якби «чужих» наповнили фторидно-сурм'яною кислотою, то вони б не тільки провалилися глибоко через підлогу, а й пари, що випускаються від їхніх мертвих тіл, убили б усе навколо них. Ця кислота в 21019 разів сильніша, ніж сірчана кислота і може просочитися через скло. І вона може вибухнути, якщо додати води. І під час її реакції виділяються отруйні випари, які можуть вбити будь-кого в приміщенні.
6. Найбільш вибухонебезпечна вибухівка
Насправді це місце ділять зараз два компоненти: октоген і гептанітрокубан. Гептанітрокубан головним чином існує в лабораторіях, і аналогічний октогену, але має більш щільну структуру кристалів, що несе в собі більший потенціал руйнування. Октоген, з іншого боку, існує в досить великих кількостях, що може загрожувати фізичному існуванню. Він використовується в твердому паливі для ракет і навіть для детонаторів ядерної зброї. І останнє є найжахливішим, оскільки незважаючи на те, з якою легкістю це відбувається в кіно, початок розщеплення/термоядерної реакції, яка призводить до яскравих ядерних хмар, що світяться, схожих на гриб, не є простим завданням, але октоген чудово з нею справляється.
7. Найбільш радіоактивна речовина
Говорячи про радіацію, варто згадати про те, що зелені стрижні «плутонія», що світяться, показані в «Сімпсонах» - це всього лише вигадка. Якщо щось радіоактивне, це зовсім не означає, що воно світиться. Варто про це згадати, оскільки «полоній-210» настільки радіоактивний, що світиться блакитним. Колишнього радянського шпигуна, Олександра Литвиненка ввели в оману, коли йому додали в їжу цієї речовини, і невдовзі він помер від раку. Це не та річ, з якою ви захочете пожартувати, свічення викликається повітрям навколо речовини, на яку впливає радіація, і дійсно об'єкти навколо можуть нагріватися. Коли ми говоримо «радіація», ми думаємо, наприклад, про ядерний реактор або вибух, де дійсно відбувається реакція поділу. Це лише виділення іонізованих частинок, а не розщеплення атомів, що не вийшло з-під контролю.
8. Найважча речовина
Якщо ви думали, що найважча речовина на Землі - це алмази, це був хороший, але неточний здогад. Це технічно створений алмазний наностержень. Це фактично сукупність з алмазів нано-масштабу, з найменшим ступенем стиснення та найважча речовина, відоме людині. Насправді його не існує, але що було б дуже доречним, оскільки це означає, що колись ми могли б покрити наші машини цим матеріалом і просто позбутися від неї, коли відбудеться зіткнення з поїздом (нереальна подія). Цю речовину винайшли в Німеччині в 2005 році і, можливо, її використовуватимуть так само, як і промислові алмази, за винятком тієї обставини, що нова речовина більш стійка до зносу, ніж звичайні алмази.
9. Наймагнітніша речовина
Якби індуктор був невеликим чорним шматком, то це була б та сама речовина. Речовина, розроблена в 2010 році із заліза та азоту, має магнітні здібності, які на 18% більше, ніж попередній «рекордсмен», і є настільки потужним, що змусив вчених переглянути, як працює магнетизм. Людина, яка відкрила цю речовину, дистанціювалася зі своїми вивченнями, щоб ніхто з інших вчених не зміг би відтворити її роботу, оскільки повідомлялося, що аналогічне з'єднання розроблялося в Японії в минулому 1996 р., але інші фізики не змогли його відтворити, тому офіційно цю речовину не прийняли. Незрозуміло, чи японські фізики мають пообіцяти зробити «Сепуку» за цих обставин. Якщо цю речовину можна буде відтворити, це може означати нове століття ефективної електроніки та магнітних двигунів, можливо, посилені за потужністю на порядок.
10. Найбільш сильна надплинність
Надплинність є станом речовини (подібно до твердого або газоподібного), яке має місце при екстремально низьких температурах, має високу термопровідність (кожна унція цієї речовини повинна мати таку саму температуру) і ніякої в'язкості. Гелій-2 є найхарактернішим представником. Чашка «гелію-2» мимоволі підніметься та виллється з контейнера. «Гелій-2» також проникне через інші тверді матеріали, оскільки повна відсутність сили тертя дозволяє текти йому через інші невидимі отвори, через які не міг би витекти звичайний гелій (або вода для цього випадку). «Гелій-2» не приходить у потрібний стан при числі 1, ніби в нього є здатність діяти на свій розсуд, хоча це також найефективніший термопровідник на Землі, у кілька сотень разів кращий за мідь. Теплота переміщується настільки швидко через «гелій-2», що вона швидше пересувається хвилями, подібно до звуку (відомому насправді як «другий звук»), ніж розсіюється, при цьому вона просто переміщається від однієї молекули до іншої. Між іншим, сили, які керують можливістю «гелію-2», повзати по стіні, названі «третім звуком». У вас навряд чи буде щось екстремальне, ніж речовина, яка зажадала визначення 2 нових типів звуку.

Метали людство почало активно використовувати ще 3000-4000 роках до нашої ери. Тоді люди познайомилися з найпоширенішими з них, це золото, срібло, мідь. Ці метали були дуже легко знайти на поверхні землі. Трохи пізніше вони пізнали хімію та почали виділяти з них такі види як олово, свинець та залізо. У Середньовіччі набирали популярності дуже отруйні види металів. В побуті був миш'як, яким було отруєно більше половини королівського двору у Франції. Так само і , яка допомагала вилікувати різні хворобитих часів, починаючи від ангіни та до чуми. Вже до двадцятого століття було відомо понад 60 металів, а на початку XXI століття – 90. Прогрес не стоїть на місці та веде людство вперед. Але постає питання, який метал є важким і перевершує за вагою решту? І взагалі, які вони, ці найважчі метали у світі?

Багато хто помилково думає, що золото і свинець є найважчими металами. Чому так склалося? Багато хто з нас виріс на старих фільмах і бачив, як головний геройвикористовує свинцеву пластину для захисту від злісних куль. На додаток, і сьогодні використовують свинцеві пластини в деяких видах бронежилетів. А при слові золото у багатьох виринає картинка з важкими зливками цього металу. Але думати, що вони найважчі – помилково!

Для визначення найважчого металу треба брати до уваги його щільність, адже чим більша щільність речовини, тим вона важча.

ТОП-10 найважчих металів у світі

  1. Осмій (22,62 г/см 3),
  2. Іридій (22,53 г/см 3),
  3. Платина (21,44 г/см 3),
  4. Реній (21,01 г/см 3),
  5. Нептуній (20,48 г/см 3),
  6. Плутоній (19,85 г/см 3),
  7. Золото (19,85 г/см3)
  8. Вольфрам (19,21 г/см 3),
  9. Уран (18,92 г/см 3),
  10. Тантал (16,64 г/см3).

І де свинець? А він знаходиться набагато нижче в цьому списку, в середині другого десятка.

Осмій та іридій – найважчі метали у світі

Розглянемо основних важкоатлетів, які ділять 1 та 2 місця. Почнемо з іридію і заразом вимовимо слова подяки на адресу англійського вченого Смітсона Теннат, який в 1803 отримав цей хімічний елемент з платини, де був присутній разом з осмієм у вигляді домішки. Іридій із давньогрецької можна перекласти, як «райдуга». Метал має білий колірзі срібним відтінком і його можна назвати не тільки великоваговим, але й найміцнішим. На нашій планеті його дуже мало і за рік його видобувають лише до 10000 кг. Відомо, що більшість родовищ іридію можна знайти на місцях падіння метеоритів. Деякі вчені приходять до думки, що цей метал раніше був широко поширений на нашій планеті, проте через свою вагу він постійно видавлював себе ближче до центру Землі. Іридій зараз широко затребуваний у промисловості та використовується для отримання електричної енергії. Також його люблять використовувати палеонтологи, і з допомогою іридію визначають вік багатьох знахідок. Крім того, цей метал можуть використовувати для покриття деяких поверхонь. Але зробити це важко.


Далі розглянемо осмій. Він найважчий у періодичній таблиці Менделєєва, ну, відповідно, і найважчий у світі метал. Осмій має олов'яно-білий із синім відтінок і також відкритий Смітсоном Теннатом одночасно з іридієм. Осмій практично неможливо обробити і здебільшого його знаходять на місцях падіння метеоритів. Він неприємно пахне, запах схожий на суміш хлору та часнику. І з давньогрецької перекладається, як «запах». Метал досить тугоплавкий і використовується в лампочках та інших приладах з тугоплавкими металами. За один грам цього елемента треба заплатити понад 10000 доларів, з цього зрозуміло, що метал дуже рідкісний.


Осмій

Як не крути, найважчі метали є великою рідкістю і тому дорого коштують. І треба запам'ятати на майбутнє, що ні золото, ні свинець – не найважчі метали у світі! Іридій та осмій – ось переможці у вазі!